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In this note, we give a preliminary introduction to graph theory. We will mainly focus on the solutions of discrete Poisson
equation, divisors and the complexity. We will closely follow the discussions in Ref. [1, 2].
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I. NOTATIONS AND DEFINITIONS

We briefly introduce the basic concepts and definitions in the graph theory in this section.

Definition I.1. Γ is a simple, undirected, and connected graph on N vertices, where

1. “Simple” means at most one edges between any two vertices and no self-loops.

2. “Undirected” means no directed edges.

3. “Connected” means any two vertices are connected by a path.

Definition I.2. An adjacency matrix A is an N× N symmetric matrix given by{
Aij = 1, if there is an edge ⟨i, j⟩ between them.
Aij = 0, otherwise.

Definition I.3. A degree matrix D is an N × N diagonal matrix D = diag(d1, · · · , dN ). The entry di is the degree of vertex i
that is the number of edges incident to i.

Definition I.4. A Laplacian matrix L is given by L = D −A.

Definition I.5. A tree on N vertices is a graph that contains no cycle or loop. A spanning tree of a graph is a tree that includes
all of the vertices.

Now we consider a function f : Γ → X , where X is an Abelian group. We denote the set of all such functions as F(Γ, X).
We can define the discrete Laplacian operator ∆L : F(Γ, X) → F(Γ, X) as,

∆Lf(i) =
∑
j

Lijf(j) = dif(i)−
∑

j:⟨i,j⟩∈Γ

f(j) =
∑

j:⟨i,j⟩∈Γ

[f(i)− f(j)] . (I.1)

Consider the discrete Poisson equation

∆Lf(i) = g(i). (I.2)
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If g = 0, then it becomes discrete Laplace equation. And now the function f(i) ∈ F(Γ, X) is said to be harmonic. The set of
all the discrete harmonic functions is the kernel of ∆L, i.e. kerX ∆L. Consider the cokernel of ∆L

cokerX ∆L =
F(Γ, X)

ImX ∆L
. (I.3)

Then it is natural to understand the solutions of Eq.(I.2). A solution exists if and only if g is in the same equivalence class as 0
in this quotient.

II. SOLUTIONS OF DISCRETE POISSON EQUATIONS

The general solutions of the discrete Poisson equation, if any, can also be found by applying the Smith decomposition of L
[3]. It is given by

R = PLQ, Rab =
∑
i,j

PaiLijQjb. (II.1)

where P,Q ∈ GLN(Z) and R = diag(r1, · · · , rN). The diagonal entries are non-negative, known as the invariant factors, such
that ra|ra+1 for a = 1, · · · ,N−1. It is essential to discuss the eigenvalues of the Laplacian matrix L. L acts on a N dimensional
vector v with each elements being an object on vertex. Writing v = (v1, · · · , vN)T , we have,

Lv = w = (w1, · · · , wN)
T ⇒ wi = deg(i)vi −

∑
j:⟨ij⟩∈Γ

vj =
∑

j:⟨ij⟩∈Γ

(vi − vj). (II.2)

Obviously, v = (1, · · · , 1)T is an eigenvector of L with zero eigenvalues. We have the theorem,

Theorem II.1. For a graph Γ, the number of zero eigenvalues of the Laplacian matrix L is equal to the number of connected
components of the graph Γ.

Proof. Let Γ has k connected components. So Γ can written as a union of disjoint sets, i.e. Γ = S1 ∪ · · · ∪ Sk. Let us separate
the proof into two parts.

• L has at least k zero eigenvalues.

Define vectors v1, · · · ,vk such that {
vi(j) = 1, if j ∈ Si,

vi(j) = 0, otherwise,

where vi(j) is the j-th component of the vector vi. It is easy to check vi are eigenvectors with zero eigenvalue of L and
any two of them are orthogonal. Hence, {v1, · · · ,vk} is a set of orthogonal basis of L.

• L has at most k zero eigenvalues.

Assume we can find another vector ṽ orthogonal to {v1, . . . ,vk} satisfying Lṽ = 0. Then

ṽTLṽ =
∑

j<j:⟨ij⟩∈Γ

(ṽ(i)− ṽ(j))2 = 0.

It means ṽ must be constant on every connected vertices. Suppose it is nonzero and constant on all sites in Si then it
cannot be orthogonal to vi. So there is no way to find the k + 1-st zero eigenvector.

In our case, the graph is fully connected thus only has one component. So L only has one zero eigenvector. Therefore, we
have ra > 0 for a = 1, · · · ,N − 1 and rN = 0. Note the summation of entries of L over a row or a column is zero by the
definition of L. Using this property, since

Lij =
∑
ab

(P−1)iaRab(Q
−1)bj =

∑
a

ra(P
−1)ia(Q

−1)aj , (II.3)
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0 =
∑
i

Lij =
∑
a

ra(Q
−1)aj

∑
i

(P−1)ia = 0 ⇒
∑
i

(P−1)ia = 0. (II.4)

Similarly, ∑
i

(Q−1)ai = 0 (II.5)

for a < N. So we can choose them to be

P−1 =

(
P̃−1 0

−1T P̃−1 1

)
, Q−1 =

(
Q̃−1 −Q̃−11
0T 1

)
, (II.6)

where P̃ , Q̃ ∈ GLN−1(Z). It follows that

P =

(
P̃ 0
1T 1

)
, Q =

(
Q̃ 1
0T 1

)
(II.7)

Using RQ−1 = PL, we can define

f ′
a =

∑
i

(Q−1)aif(i), g′a =
∑
i

Paig(i). (II.8)

And the discrete Poisson equation turns to be

raf
′
a = g′a, a = 1, · · · ,N. (II.9)

Note that we have N independent equations now. Let us first consider the case a = N. The condition for the existence of a
solution is g′N =

∑
i g(i) = 0. And f ′

N can take any value in X which can also be regarded as an zero mode.
Now consider a < N.

1. X = R: We have a unique solution

f ′
a =

1

ra
g′a (II.10)

Then

f(i) =
∑
a<N

∑
j

QiaPaj

ra
g(j) + c, (II.11)

where c is a real constant.

2. X = U(1): There are solutions

f ′
a =

1

ra
g′a +

2πpa
ra

, (II.12)

where pa = 0, · · · , ra − 1 are series of integers. Then

f(i) =
∑
a<N

∑
j

QiaPaj

ra
g(j) + 2π

∑
a<N

Qiapa
ra

+ c, (II.13)

where c ∼ c+ 2π.

3. X = Z: The solution

f ′
a =

1

ra
g′a (II.14)
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exists if and only if ra divides g′a. This is equivalent to g′a = 0 mod ra for a < N. Then

f(i) =
∑
a<N

∑
j

QiaPaj

ra
g(j) + p, (II.15)

where p is an integer.

4. X = ZN : The equation becomes

raf
′
a = g′a mod N. (II.16)

Let us first review Bézout’s identity,

Theorem II.2. Let a and b be integers. Then there exists integers x and y such that

ax+ by = m gcd(a, b). (II.17)

Go back to the original equation. We first divide the Eq.(II.16) by d = gcd(ra, N), i.e.

ra
d
f ′
a =

g′a
d

mod
N

d
. (II.18)

Since gcd(ra/d,N/d) = 1,

∃
(ra
d

)−1

mod
N

d
, s.t.

(ra
d

)−1 ra
d
f ′
a =

(ra
d

)−1 g′a
d

=
g′a
ra

mod
N

d
. (II.19)

i.e.

f ′
a =

g′a
ra

mod
N

d
. (II.20)

To match the notations in Ref. [1], we define r̃a = d/ra,

f ′
a =

g′a
d
r̃a mod

N

d
. (II.21)

Explicitly,

f ′
a =

r̃a
gcd(N, ra)

g′a +
Npa

gcd(N, ra)
(II.22)

where pa ∼ pa + gcd(ra, N). So there are gcd(N, ra) inequivalent solutions. The solution of this form exists if and only
if gcd(N, ra)|g′a. Then,

f(i) =
∑
a<N

∑
j

Qiar̃aPaj

gcd(N, ra)
g(j) +

∑
a<N

NQiapa
gcd(N, ra)

+ p, (II.23)

where p is an integer modulo N . We can also absorb the integer and write a more compact expression. Notice that
gcd(rN, N) = N and QiN = 1. We define pN = p mod N , then general solution is

f(i) =
∑
a<N

∑
j

Qiar̃aPaj

gcd(N, ra)
g(j) +

N∑
a=1

NQiapa
gcd(N, ra)

. (II.24)

When g = 0, we have ZN -valued discrete harmonic function.
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III. JACOBIAN GROUP AND COMPLEXITY

We will introduce the Jacobian group of a graph in this part which relates to the complexity. Let us set X to be an integer
set Z. The function f : Γ → Z in the set F(Γ,Z) assigns an integer to every vertex in the graph. Now the Laplacian operator
∆L : F(Γ,Z) → F(Γ,Z). Therefore we have the following definitions.

Definition III.1. A divisor is an element q in F(Γ,Z) such that

q : Γ → Z.

We name F(Γ,Z) as Div(Γ). Given a divisor, its degree is defined as deg q =
∑

i q(i). Divk(Γ,Z) denotes the set of all
k-degree divisors.

Definition III.2. An element of ImZ ∆L is known as the principal divisor.

By definition, any principal divisor has degree zero. They form the group

Div0(Γ) = {q ∈ Div(Γ)|deg(q) = 0} (III.1)

Definition III.3. The Picard group and Jacobian group is defined as

Pic(Γ) =
Div(Γ,Z)
ImZ ∆L

= cokerZ(∆L), Jac(Γ) =
Div0(Γ,Z)
ImZ ∆L

. (III.2)

There exists an isomorphism

Jac(Γ) ∼=
∏
a<N

Zra . (III.3)

This can be seen as follow. For all vertices (v1, · · · , vN) in the graph, the images of q form a vector (q(1), dots, q(N)) ∈ ZN.
Thus,

Div(Γ) ∼= ZN. (III.4)

For Div0(Γ), the constraint q(1) + · · ·+ q(N) = 0 is imposed. it leads to only N− 1 independent integers. Hence,

Div0(Γ) ∼= ZN−1. (III.5)

Consider the image of the Laplacian operator,

ImZ ∆L = ∆Lf(i) = Lf , (III.6)

where f = (f(1), · · · , f(N))T ∈ ZN. Under the Smith decomposition, R = PLQ = diag(r1, · · · , rN−1, we have the isomor-
phism,

ImZ ∆L
∼= r1Z× · · · × rN−1Z. (III.7)

Finally,

Jac(Γ) =
Div0(Γ,Z)
ImZ ∆L

∼=
∏
a<N

Zra .

Furthermore, it is also easy to check

Pic(Γ) ∼= Z× Jac(Γ). (III.8)

The order of Jac(Γ) can be expressed in terms of invariants ri or eigenvalues of L:

|Jac(Γ)| =
∏
a<N

ra =
λ2 · · ·λN

N
, (III.9)
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where 0 = λ1 < λ2 ≤ · · ·λN are eigenvalues of L. By Kirchhoff’s matrix-tree theorem [4, 5], it is equal to the number of
spanning trees of Γ. A tree is an undirected connected graph with no cycles. It is a spanning tree of Γ if it includes all vertices
of Γ. The spanning tree measures how connected a graph is and is the well-known notion complexity of a graph.

Lastly, it is easy to generalize Z to ZN . Then the mod-N reduction of Jacobian group Jac(Γ, N) has the isomorphism

Jac(Γ, N) ∼=
N∏

a=1

Zgcd(ra,N). (III.10)
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