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In this note, we give a preliminary introduction to graph theory. We will mainly focus on the solutions of discrete Poisson
equation, divisors and the complexity. We will closely follow the discussions in Ref. [1, 2].
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I. NOTATIONS AND DEFINITIONS

We briefly introduce the basic concepts and definitions in the graph theory in this section.
Definition L.1. T' is a simple, undirected, and connected graph on N vertices, where
1. “Simple” means at most one edges between any two vertices and no self-loops.
2. “Undirected” means no directed edges.
3. “Connected” means any two vertices are connected by a path.
Definition 1.2. An adjacency matrix A is an N x N symmetric matrix given by

{Aij =1, ifthereisanedge (i,j) between them.

Aij =0, otherwise.

Definition 1.3. A degree matrix D is an N x N diagonal matrix D = diag(dy,- - ,dy). The entry d; is the degree of vertex i
that is the number of edges incident to 1.

Definition I.4. A Laplacian matrix L is given by L = D — A.

Definition L.5. A tree on N vertices is a graph that contains no cycle or loop. A spanning tree of a graph is a tree that includes
all of the vertices.

Now we consider a function f : ' — X, where X is an Abelian group. We denote the set of all such functions as F(I", X).
We can define the discrete Laplacian operator A, : F(I', X) — F(T', X) as,

Apf(i) =Y Lif() =dif(i)— > fG)= D, [f@)—r10)]. (L)
J J:{i,5)€er J:(i,5)€T

Consider the discrete Poisson equation

ApLf(i) = g(i). 12



If g = 0, then it becomes discrete Laplace equation. And now the function f(i) € F(I', X) is said to be harmonic. The set of
all the discrete harmonic functions is the kernel of Ay, i.e. kerx Ay,. Consider the cokernel of A,

F(T,X)

. I
IIHX AL ( 3)

COkeI‘X AL =

Then it is natural to understand the solutions of Eq.(I.2). A solution exists if and only if g is in the same equivalence class as 0
in this quotient.

II. SOLUTIONS OF DISCRETE POISSON EQUATIONS

The general solutions of the discrete Poisson equation, if any, can also be found by applying the Smith decomposition of L
[3]. It is given by

R=PLQ, Ra =) PuiLijQj. (IL1)
(2%
where P, ) € GLn(Z) and R = diag(ry,--- ,rn). The diagonal entries are non-negative, known as the invariant factors, such
that ro|rq4q fora = 1,--- N — 1. Itis essential to discuss the eigenvalues of the Laplacian matrix L. L acts on a N dimensional
vector v with each elements being an object on vertex. Writing v = (vq,- -, vN)T, we have,

Lv=w=(wy, - ,wy) = w;=deg(i)v; — Z v; = Z (v; —vy). (I1.2)

j(ij)er Ji(ij)er

Obviously, v = (1,---,1)T is an eigenvector of L with zero eigenvalues. We have the theorem,

Theorem IL.1. For a graph I, the number of zero eigenvalues of the Laplacian matrix L is equal to the number of connected
components of the graph .

Proof. Let I has k connected components. So I' can written as a union of disjoint sets, i.e. I' = S; U --- U Sj. Let us separate
the proof into two parts.

* [ has at least k zero eigenvalues.

Define vectors vy, - - - , v such that

0, otherwise,

where v;(j) is the j-th component of the vector v;. It is easy to check v; are eigenvectors with zero eigenvalue of L and
any two of them are orthogonal. Hence, {v1, -, vy} is a set of orthogonal basis of L.

* [ has at most k zero eigenvalues.

Assume we can find another vector v orthogonal to {v1, ..., vy} satisfying Lv = 0. Then
Vv = ) () - ¥(j)’ =0.
J<j:(ij)el

It means v must be constant on every connected vertices. Suppose it is nonzero and constant on all sites in .S; then it
cannot be orthogonal to v;. So there is no way to find the k£ + 1-st zero eigenvector.

O

In our case, the graph is fully connected thus only has one component. So L only has one zero eigenvector. Therefore, we
have r, > O fora = 1,--- ;N — 1 and 7y = 0. Note the summation of entries of L over a row or a column is zero by the
definition of L. Using this property, since

Lij =Y (P™iRab(Q Noj = D ra(P™)ia(@Q May, (IL3)

ab a



0=> Lij=Y (@ Naj D (P ia=0 = Y (P ")ia=0. (IL4)
Similarly,
D Q7 Mai =0 (IL5)

for a < N. So we can choose them to be

-1 P71 0 -1 _ Qil —Qill
P - <_1T15_1 1> ) Q - (OT 1 ) ] (H6)

() a3 )
Using RQ~! = PL, we can define
o=@ aif @), g =D Paigli). (IL8)
And the discrete Poisson equation turns to be
Tafo=ga, a=1,- N (IL.9)

Note that we have N independent equations now. Let us first consider the case a = N. The condition for the existence of a
solution is gy, = >, g(¢) = 0. And f{| can take any value in X which can also be regarded as an zero mode.

Now consider a < N.

1. X = R: We have a unique solution

1
fo=—9a (IL.10)
Ta
Then
. QiaPa j .
fli) =D = g() +e, (IL11)
a<N j @
where c is a real constant.
2. X = U(1): There are solutions
1 2P
o= —g,+ Lo (IL12)
T(l T(I.
where p, =0, --- ,r, — 1 are series of integers. Then
fiy=>3" @ialai o) 1 27 > Qiaba | (IL13)
a<N j Ta a<N @
where ¢ ~ ¢ + 2.
3. X = Z: The solution
f/ _ 1 /
o= —U9, (I1.14)



exists if and only if 7, divides g;,. This is equivalent to g, = 0 mod 7, for a < N. Then

=> > Q” =199 6(5) + p, (IL15)
a<N j
where p is an integer.
4. X = Zn: The equation becomes
rofs =g, mod N. (IL.16)
Let us first review Bézout’s identity,
Theorem IL.2. Let a and b be integers. Then there exists integers x and y such that
ax + by = mged(a,b) (IL.17)
Go back to the original equation. We first divide the Eq.(Il.16) by d = ged(rq, N), i.e.
Te . G N
—fo== d —.
qfe et
Since ged(r,/d, N/d) =1

()"

(I1.18)
N a -1 a a 1y :
mod L s.t. (%) % I = (%) %l = g—z mod — (11.19)
ie.
/
N
fr =% mod <. (11.20)
To match the notations in Ref. [1], we define 7, = d/r,,
/
N
£l = %Fu mod —. (IL.21)
Explicitly,
/o 7Za I Npa
Jo = gedv, %t
where p, ~ pa + ng(Ta;
if gcd(N, 74)|g,,. Then

(1L.22)
). So there are gcd(N, r,) inequivalent solutions. The solution of this form exists if and only
Qzara a] . NQiapa
=2 2. 90) + 2 .
5057 eed(V % ged(N,7q)
ged(rn, N) =

(I1.23)
where p is an integer modulo N. We can also absorb the integer and write a more compact expression. Notice that
N and Q;n = 1. We define py = p mod N, then general solution is

ZZ Q'La’ra a]

N
. NQiapa
cd(N,r,) )+Z cd(N,ry)
ach 7 8 =8 yTa
When g = 0, we have Z y-valued discrete harmonic function

(I1.24)



III. JACOBIAN GROUP AND COMPLEXITY

We will introduce the Jacobian group of a graph in this part which relates to the complexity. Let us set X to be an integer
set Z. The function f : T' — Z in the set F(I",Z) assigns an integer to every vertex in the graph. Now the Laplacian operator
A : F(I,Z) — F(T,Z). Therefore we have the following definitions.

Definition IIL.1. A divisor is an element q in F(T',7) such that
q:T — 7.

We name F(T,Z) as Div(T). Given a divisor, its degree is defined as degq = 3", q(i). Div¥(T',Z) denotes the set of all
k-degree divisors.

Definition IIL.2. An element of Imz Ay is known as the principal divisor.
By definition, any principal divisor has degree zero. They form the group
Div?(I") = {q € Div(I')| deg(q) = 0} (IIL.1)
Definition II1.3. The Picard group and Jacobian group is defined as

_ Div(I',Z) ~ Div(I, Z)

Pic(T') = ————= = cokerz(A Jac(I') = ————=. 1.2
ie(l) = 20— coler (M), Jae(l) = U an2)
There exists an isomorphism
Jac(T) = [] Zr,. (I1L.3)
a<N
This can be seen as follow. For all vertices (vy,- -+ ,vy) in the graph, the images of ¢ form a vector (¢(1), dots,q(N)) € ZN.
Thus,
Div(T) = ZN. (I11.4)

For Div®(T"), the constraint ¢(1) + - - - + ¢(N) = 0 is imposed. it leads to only N — 1 independent integers. Hence,
Div(I') 2= zZN-1, (I1L5)
Consider the image of the Laplacian operator,
Imz A, = AL f(i) = Lf, (11L.6)

where f = (f(1),---, f(N))T € ZN. Under the Smith decomposition, R = PLQ = diag(ry,--- ,n_1, we have the isomor-
phism,

Imzg Ap 2 rZ x - X ry_1Z. (I11.7)
Finally,
DivY(T, Z)
Jac(T') = ’ Z,
0=, = 112
Furthermore, it is also easy to check
Pic(T') 2 Z x Jac(T"). (I11.8)

The order of Jac(I") can be expressed in terms of invariants r; or eigenvalues of L:

Ao e\
Jac()] =[] ra = = (IL.9)
a<N



where 0 = A\; < Ay < --- Ay are eigenvalues of L. By Kirchhoff’s matrix-tree theorem [4, 5], it is equal to the number of
spanning trees of I'. A tree is an undirected connected graph with no cycles. It is a spanning tree of I if it includes all vertices
of I'. The spanning tree measures how connected a graph is and is the well-known notion complexity of a graph.

Lastly, it is easy to generalize Z to Zy. Then the mod-N reduction of Jacobian group Jac(I", N) has the isomorphism

N
Jac(T, N) = [ [ Zgeara.v)- (111.10)
a=1
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